EE2026 Digital Design

Chua Dingjuan elechuad@nus.edu.sg

Module Outline

Part 1

- Number systems
- Boolean Algebra and logic gates
- Gate-level design and minimization
- Combinational logic circuits and design
- Logic IC family

Part 2

- Sequential logic circuits
 - Flip-Flops, Counters, (Shift Registers)
- Verilog review
- Verilog behavioral and structural modeling
- Digital finite state machine design
- Modeling of FSMs using Verilog

Expected Learning Outcomes

- Able to design basic sequential logic circuits using flip-flops.
- Able to design, build and test digital systems using FPGAs.
- Able to design, model and simulate digital logic circuits using Verilog.
- Able to design and model simple state machines based on the FSM approach.

Module Organization

10-12 Lectures (2+1 hours / week)

5 Tutorial Sessions

Assessment

Weekly Quizzes – 5%

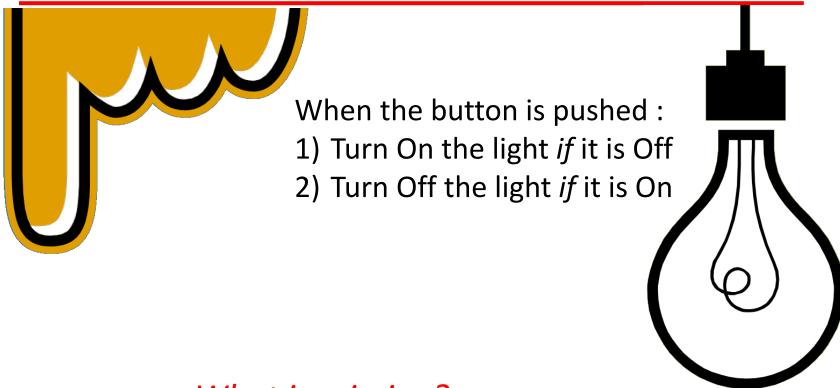
Luminus Quiz (MCQ, MRQ, FIB), three attempts.

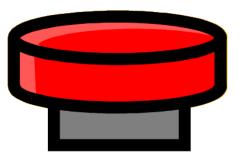
Due Sunday of the following week. Eg. W6 quiz is due recess week Sunday.

Final Quiz – 15%

Week 13 (Venue & Time to be confirmed)

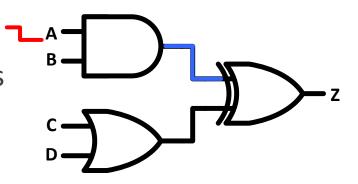
EE2026 Tutorial & Lab Schedule


Week	Tutorials	Lab	Quiz
WK 6			
Recess Week			
WK7	Tutorial – 6	Project Lab 1	
WK8	Tutorial – 7	Project Lab 2	
WK9	Tutorial – 8	Project Lab 3	
WK10	Tutorial – 9	Project Lab 4	
WK11	Tutorial – 10		
WK12		Project Lab 5 / Project Evaluation	
WK13			Final Quiz


SEQUENTIAL CIRCUITS - I

©COPYRIGHT CHUA DINGJUAN. ALL RIGHTS RESERVED.

Design a circuit to do this >>


What is missing?

- Remembering the previous <u>state</u> of the bulb → MEMORY
- 2) Responding to an input EVENT (cf. input value)

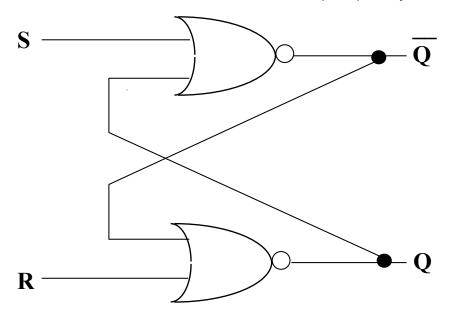
Sequential Logic Circuits?

Combinational Logic Circuits:

Outputs depend on current inputs

Sequential Logic Circuits:

- Outputs depend on current and previous inputs
 Memory!
- Requires separation of previous, current, future : <u>states</u>
- O 2 Types of sequential circuits:

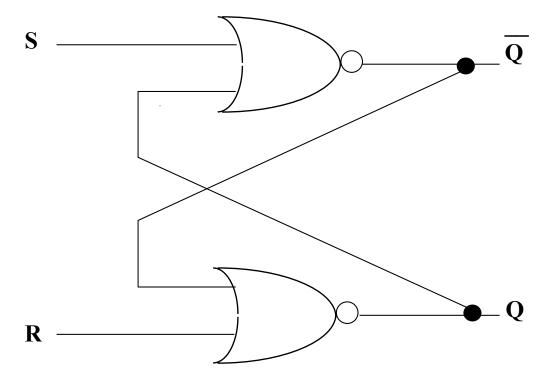

Synchronous	Asynchronous	
Clocked: need a clock input	Unclocked	
Responds to inputs at discrete time instants governed by a clock input	Responds whenever input signals change	

SR Flip-flop (FF)

The simplest memory element has two stable states:

Flip-Flop (FF) → it can store 1 bit of information

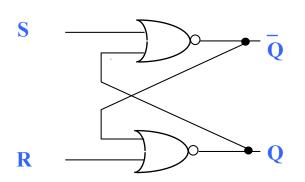
Most basic FF : Set-Reset (SR) Flip-flop / Latch



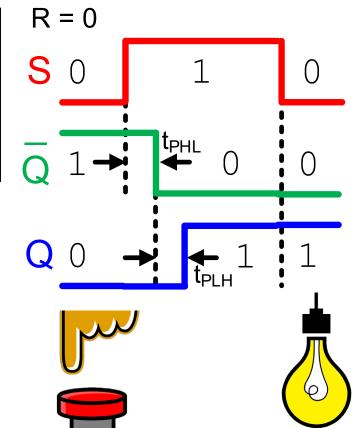
S	R	Output	Q+	
0	0			
0	1			
1	0			
1	1			
0 0 is the rest state				

Implemented with NOR / NAND gates

SR Flip-flop (FF)


NOR Implementation

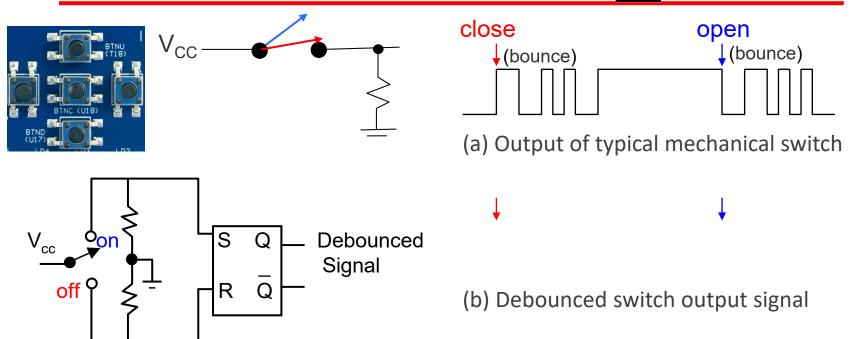
S	R	Output Q
0	0	
0	1	
1	0	
1	1	


Α	В	NOR

SR Flip-flop (FF)

- FF can record and store transient events.
- Switching is not instantaneous → propagation delays

S	R	Output		
0	0	Hold		
0	1	Q = 0		
1	0	Q = 1		
1	1	Invalid		
0	0 0 is the rest state			


1) Assume that the *rest state* is:

$$S = R = 0$$
; let $Q = 0$, $\overline{Q} = 1$

2) If $S \rightarrow Q$ while $R = 0 \Rightarrow Q = 1$, $\overline{Q} = 0$, i.e., the event (S going high) is recorded and stored as Q = 1.

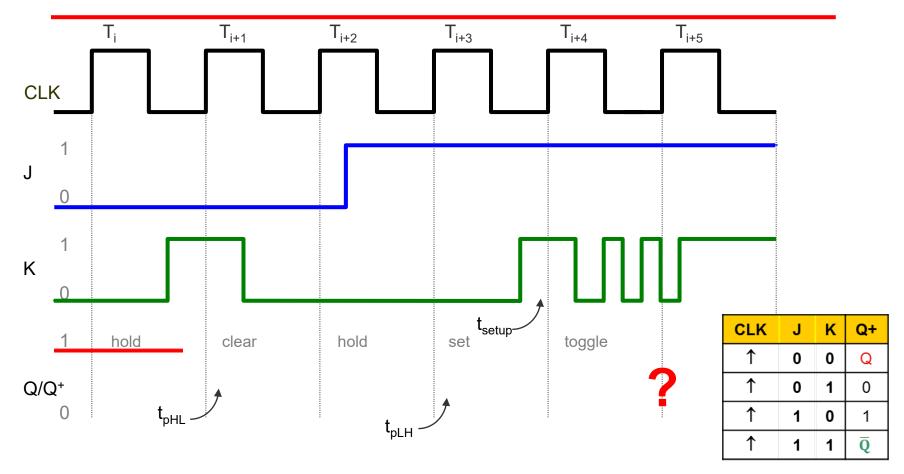
A Simple Application...

- Mechanical switches bounce before settling down which may cause problems as inputs.
- Switch debouncing is a common use of S-R FFs.

ဟ	R	Output	
0	0	Hold	
0	1	Q = 0	
1	0	Q = 1	
1 1 Invalid			
0 0 is the rest state			

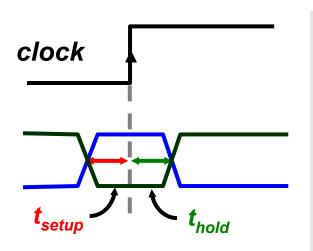
JK FF

The JK FF is based on SR with 2 improvements: _____ & _____



CLK	J	K	Q	Q ⁺	
↑	0	0	0	0	
\uparrow	0	0	1	1	
\uparrow	0	1	0	0	
\uparrow	0	1	1	0	
\uparrow	1	0	0	1	
\uparrow	1	0	1	1	
↑	1	1	0	1	
\uparrow	1	1	1	0	
characteristic table					

The JK FF is a synchronous circuit:


- Clock input is a controlling input.
 It specifies when circuit read inputs / change outputs.
- Synchronous circuits respond only at the _____ clock edges
 i.e., LOW → HIGH, HIGH → LOW transitions
- At any other time, changing inputs have no effect on the output.

Respond @ Active Clock Edges

- When inputs don't change → FF outputs don't change.
- If inputs change FF output changes state only at active clock edge.

FF Timing Parameters

 t_{setup} : minimum time before the *active* clock

edge by which FF inputs must be stable.

 t_{hold} : minimum time inputs must be stable after

active clock edge

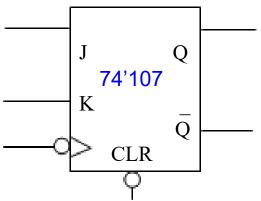
 $t_{n\mu\nu}$: time taken for FF output to change state

from High to Low.

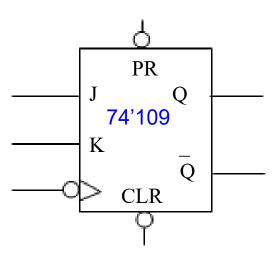
t_{n/H}: time taken for FF output to change state

from Low to High.

What happens if inputs change state right at the active clock transition?

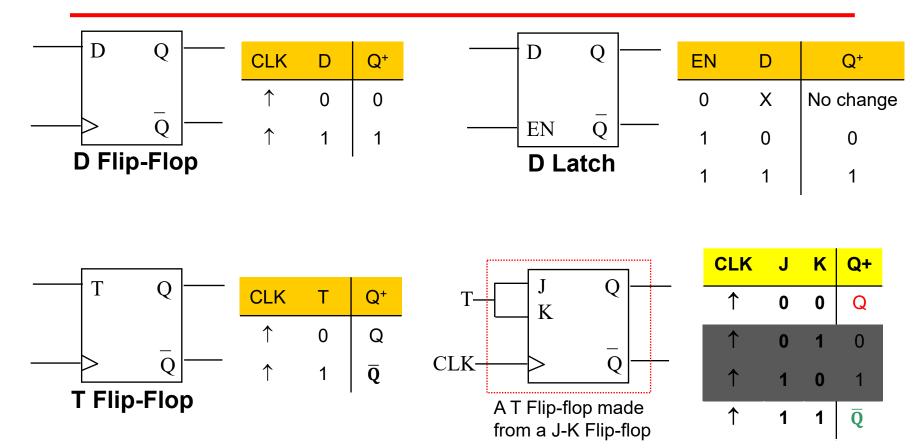

Answer: output is ______

Thus, input changes must meet required setup & hold times of device == Operating Speed of device


http://www.ti.com/product/SN74LS107A

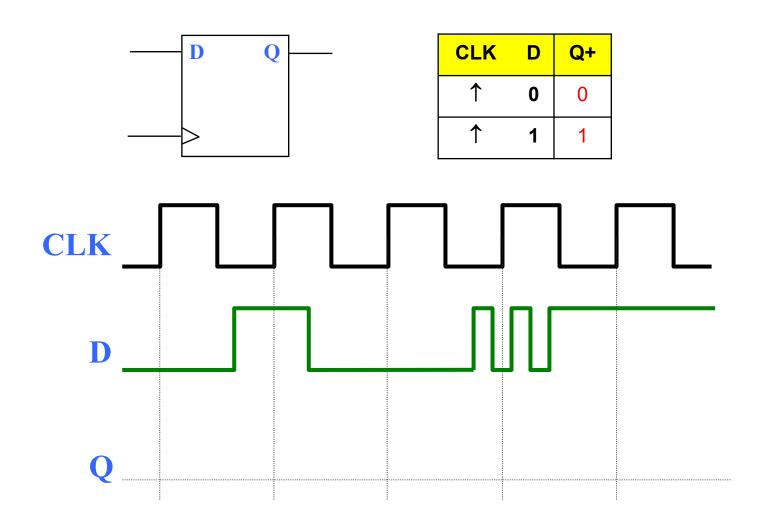
Commercially Available JK FFs

74'107 with asynchronous clear

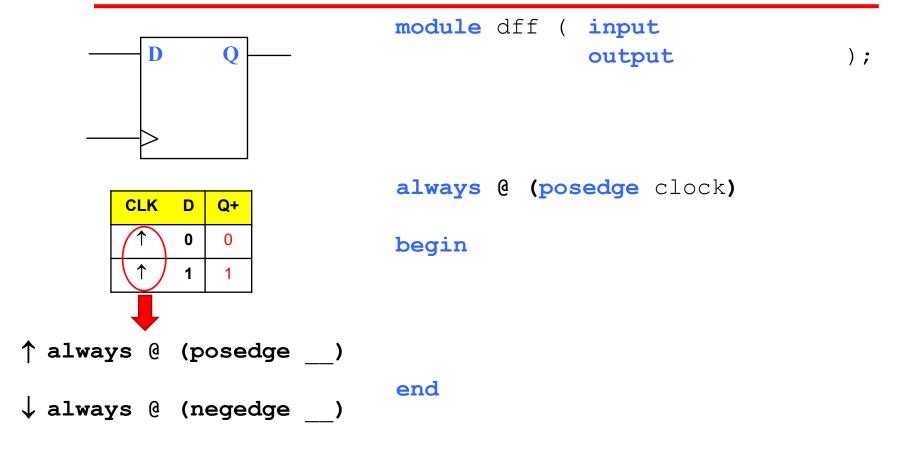


74'109 with direct set & direct clear

CLK	CLR	J	K	Q⁺
X	L	X	Χ	L
\downarrow	Н	L	L	Q
\downarrow	Н	L	Н	L
\downarrow	Н	Н	L	Н
\downarrow	Н	Н	Н	\overline{Q}


CLK	PR	CLR	J	K	Q⁺
X	L	Н	X	Χ	Н
Χ	Н	L	X	X	L
X	L	L	X	Χ	not allowed
$\overline{}$	Н	Н	L	L	Q
\downarrow	Н	Н	L	Н	L
\downarrow	Н	Н	Н	L	H
\downarrow	Н	Н	Н	Н	$\overline{\overline{\mathbf{Q}}}$

Other Flip-Flops...



Since T Flip-flops are easy to construct from other FFs, they are not available commercially.

Verilog Time! – D-FF

Verilog Time! – D-FF

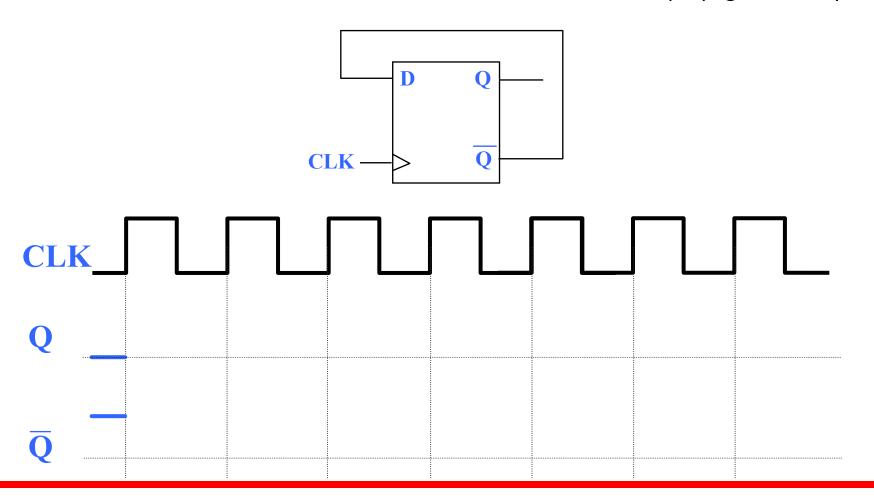
endmodule

Some notes on: always & reg

Registers

- Anything assigned in an always block must be type reg
- In Verilog, the term register (reg) simply means a variable that can hold a value
- Values of registers can be changed instantaneously. This is different from the wire type!

Always Block


- Conceptually, the always block runs once when a signal in sensitivity list changes value.
- Statements within always block are executed sequentially.
- begin and end behave like parentheses/brackets
- O No assign!

Summary

- SR Flip Flop & Applications
- JK Flip Flop
- FF Timing Parameters
- Commercial JK Flip Flops
- Verilog description of D Flip Flop

Practice Question

Given the circuit diagram below, complete the timing diagram below by filling in Q and \overline{Q} . Assume that the initial value of Q is '0' and include all propagation delays.

